La circonferenza
La circonferenza è una figura geometrica piana composta dall'insieme dei punti del piano che hanno la stessa distanza costante (detta raggio "r") da un punto fisso O detto centro.
La circonferenza è il luogo geometrico dei punti che hanno la stessa distanza dal centro.
La distanza di ogni punto della circonferenza dal centro (O) è detta raggio.
In altre parole, la circonferenza è il perimetro o la linea di contorno di un cerchio. Dove il cerchio è la superficie della circonferenza.
Il cerchio può essere definito anche come il luogo geometrico dei punti che hanno una distanza dal centro della circonferenza minore o uguale al raggio. Qual è la differenza tra circonferenza e cerchio? La circonferenza è la linea che delimita una figura piana, mentre il cerchio è la figura piana delimitata da tale linea. In altre parole, la circonferenza è il perimetro o il bordo del cerchio, mentre il cerchio comprende anche il suo interno.
Pertanto, il cerchio è la figura piana che contiene i punti della circonferenza e i punti interni della circonferenza.
La lunghezza della circonferenza (C) è data dalla formula 2πr
$$ C = 2 \pi r $$
Dove r è il raggio e π (pi greco) è una costante matematica approssimativamente uguale a 3,14.
Sapendo che il diametro (d) è il doppio del raggio d=2r, si può scrivere anche in questa forma
$$ C = \pi \cdot d $$
Cos'è pi greco? Il rapporto tra la lunghezza di una circonferenza e il suo diametro è un valore costante, rappresentato dal simbolo π, noto come pi greco, e si avvicina al valore di 3,14. $$ π=3,14159 $$
Le formule della circonferenza
Le principali formule per calcolare le misure della circonferenza
- Lunghezza della circonferenza
La lunghezza di una circonferenza (o perimetro) è data dalla formula 2πr, dove π è la costante matematica "pi greco" approssimativamente uguale a 3.14159 mentre "r" è il raggio. $$ C = 2 \cdot \pi \cdot r $$ - Area
L'area del cerchio delimitato da una circonferenza è data dalla formula $$ A = \pi \cdot r^2 $$ - Raggio
Il raggio è uguale alla circonferenza diviso per 2π $$ r = \frac{C}{2\pi} $$ - Diametro
Il diametro è la distanza tra due punti opposti sulla circonferenza e passa attraverso il centro. È il doppio del raggio. $$ d = 2r $$
Il raggio
Il raggio di una circonferenza è un segmento che congiunge il centro O della circonferenza con un punto qualsiasi P della circonferenza.
Pertanto, in una circonferenza esistono infiniti segmenti che identificano il raggio e sono congruenti tra loro perché hanno la stessa lunghezza.
La formula per calcolare il raggio è la seguente
$$ r = \frac{C}{2 \pi} $$
Sapendo che la circonferenza è uguale al doppio prodotto del raggio per pi greco $$ C = 2 \pi r $$ divido entrambi i membri dell'equazione per 2π e ottengo la formula del raggio $$ \frac{C}{2 \pi} = \frac{2 \pi r}{2 \pi} $$ $$ \frac{C}{2 \pi} = r $$
Gli archi
Due punti qualsiasi A e B su una circonferenza dividono la circonferenza in due parti detti archi.
Un arco è una parte della circonferenza delimitata tra un punto A a un punto B.
Per individuare la lunghezza dell'arco posso considerare l'ampiezza dell'angolo α
$$ l_a = 2 \pi r \cdot \frac{ \alpha }{360°} $$
Dove 2πr è la lunghezza della circonferenza.
Semplificando la formula della lunghezza dell'arco diventa:
$$ l_a = \pi r \cdot \frac{ \alpha }{180°} $$
Pertanto, c'è una stretta relazione tra la lunghezza dell'arco, l'ampiezza dell'angolo, il raggio della circonferenza.
Esempio. Se una circonferenza ha raggio r=5 e l'arco corrisponde a un angolo di α=45°, la lunghezza dell'arco è $$ l_a = 2 \pi r \cdot \frac{ \alpha }{360°} = 2 \cdot \pi \cdot 5 \cdot \frac{ 45° }{360°} = 3,92 $$
Le corde
Una corda di una circonferenza è un qualsiasi segmento che ha per estremi due punti A e B distinti sulla circonferenza.
Se la corda passa anche per il centro è detta diametro della circonferenza.
Il diametro
Il diametro è un segmento che congiunge due punti distinti della circonferenza e passa per il centro della circonferenza.
In pratica, il diametro è una particolare corda che attraversa il centro della circonferenza. E' la corda più lunga di una circonferenza.
La lunghezza del diametro è pari a 2r, due volte il raggio.
$$ d = 2r $$
Esistono infiniti segmenti che identificano il diametro di una circonferenza, tutti congruenti tra loro perché hanno la stessa lunghezza.
Il postulato della circonferenza
In un piano preso un punto O e un segmento AB qualsiasi, esiste una e una sola circonferenza che ha per centro il punto O e per raggio il segmento AB
L'equazione della circonferenza
L'equazione in forma standard della circonferenza sul piano cartesiano è la seguente:
$$ (x - x_0)^2 + (y - y_0)^2 = r^2 $$
Dove (x0; y0) sono le coordinate del centro O della circonferenza e r è il raggio della circonferenza.
In alternativa, posso scrivere l'equazione generale della circonferenza
$$ x^2+ y^2+ ax +by+ c = 0 $$
Dove i parametri sono a=-2x0, b=-2y0, c=x02+y02-r2
In questo caso le coordinate (x0; y0) del centro della circonferenza si ottengono tramite la formula del centro:
$$ (x_0 ; y_0) = ( - \frac{a}{2} ; - \frac{b}{2} ) $$
Mentre il raggio si ottiene in questo modo
$$ r = \sqrt{ ( - \frac{a}{2} )^2 + ( - \frac{b}{2} )^2 - c } $$
L'equazione della circonferenza può essere scritta anche in questa forma equivalente esplicita $$ y = y_0 \pm \sqrt{r^2 - (x-x_0)^2 } $$
Va sottolineato che l'equazione x2+y2+ax+by+c=0 non rappresenta sempre una circonferenza.
L'equazione rappresenta una circonferenza di centro C solo se viene rispettata questa condizione di realtà:
$$ ( - \frac{a}{2} )^2 + ( - \frac{b}{2} )^2 - c \ge 0 $$
Questo perché il raggio (r) misura la distanza tra due punti, è una lunghezza di un segmento $ \overline{OP} $ e deve essere sempre un numero non negativo ( r ≥ 0 ).
In altre parole, l'equazione è una condizione necessaria ma non sufficiente per tracciare una circonferenza.
Nel caso particolare in cui il raggio è nullo (r=0) la circonferenza è detta circonferenza degenere.
Nota. Se la distanza fosse negativa ci sarebbe un numero negativo sotto la radice quadrata e non potrebbe essere risolta nel campo dei numeri reali. $$ r = \sqrt{ ( - \frac{a}{2} )^2 + ( - \frac{b}{2} )^2 - c } $$
Esempio
Voglio tracciare una circonferenza che ha per centro il punto (x;y)=(1;3) e raggio r=2.
In questo caso x0=1 e y0=3
$$ (x - x_0)^2 + (y - y_0)^2 = r^2 $$
$$ (x - 1)^2 + (y - 3)^2 = r^2 $$
Il raggio della circonferenza è r=2
$$ (x - 1)^2 + (y - 3)^2 = 2^2 $$
$$ (x - 1)^2 + (y - 3)^2 = 4 $$
Questa equazione è soddisfatta da tutti i punti che distano 4 dal punto (1;3) del piano.
In questo modo ho delineato la circonferenza che volevo costruire.
Osservazioni
Alcune osservazioni sulle circonferenze
- Una circonferenza è una figura simmetrica rispetto al proprio centro e rispetto a qualsiasi retta passante per il cerchio.
- La circonferenza è convessa, perché presi due punti qualsiasi della circonferenza, il segmento che li unisce è interamente contenuto dentro di essa.
- I principi di congruenza in una circonferenza
Se in una circonferenza sono congruenti: due corde, due archi, due settori circolari, due segmenti circolari o due angoli al centro, allora sono congruenti anche tutti gli altri. Questo accade perché queste grandezze sono tra loro corrispondenti in modo biunivoco. Ad esempio, a un angolo al centro corrisponde un arco e viceversa.
- La circonferenza appartiene alla famiglia delle coniche
La circonferenza fa parte dell'insieme delle coniche perché posso ottenerla tagliando un cono con un piano perpendicolare all'asse del cono. L'intersezione tra il piano e la superficie del cono è una circonferenza.
E così via