Esercizio svolto con l'algoritmo di Gauss Jordan

Ho una matrice M_{4,4} e devo calcolare la matrice equivalente a gradini tramite il metodo di Gauss Jordan.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 1 & 0 & 2 & 1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

La prima colonna ha già un pivot in alto a sinistra.

Quindi annullo gli elementi sottostanti il pivot, quelli diversi da zero, con la regola dell'algoritmo di Gauss:

$$ R_i - ( q_j / p_k ) \cdot R_k $$

Prima annullo l'elemento qj=1

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ [1] & 0 & 2 & 1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 1-(1)·1 & 0-(1)·1 & 2-(1)·1 & 1-(1)·2 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 2 & 0 & 4 & 2 \\ \end{bmatrix} $$

Poi annullo l'elemento qj=2

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ [2] & 0 & 4 & 2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 2-(2)·1 & 0-(2)·1 & 4-(2)·1 & 2-(2)·2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 3 \\ 0 & -1 & 1 & -1 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

Scambio i posti tra la riga R2 e R3.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -1 & 1 & -1 \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

Poi moltiplico R2 → R2·(-1)

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -1·(-1) & 1·(-1) & -1·(-1) \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 3 & -3 & 3 \\ 0 & -2 & 2 & -2 \\ \end{bmatrix} $$

Ho così ottenuto anche il pivot nella seconda colonna.

Ora annullo gli elementi sottostanti qj=3 e qj=-2.

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 3-(3/1)·1 & -3-(3/1)·(-1) & 3-(3/1)·1 \\ 0 & -2-(-2/1)·1 & 2-(-2/1)·(-1) & -2-(-2/1)·1 \\ \end{bmatrix} $$

$$ M_{4,4} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$

La matrice ha soltanto due pivot.

Nota.Il numero dei pivot della matrice a gradini corrisponde al rango della matrice originaria M4,4. Quindi la matrice M4,4 ha rango 2.

 


 

Segnalami un errore, un refuso o un suggerimento per migliorare gli appunti

FacebookTwitterLinkedinLinkedin
knowledge base
  1. Le equazioni lineari
  2. I sistemi lineari
  3. I sistemi omogenei
  4. La risoluzione del sistema lineare con le matrici
  5. Le matrici
  6. Il teorema di struttura delle soluzioni
  7. Gli spazi vettoriali
  8. Le applicazioni lineari