Il minimo comune multiplo di monomi
Come si calcola il minimo comune multiplo dei monomi
Il minimo comune multiplo (mcm) di due o più monomi è un monomio che ha per coefficiente il m.c.m. dei valori assoluti dei coefficienti e per parte letterale il prodotto di tutte le lettere prese una sola volta con l'esponente più grande.
Quando si parla del minimo comune multiplo tra due o più monomi, si intende il monomio di grado più basso che è multiplo di tutti i monomi considerati.
Per trovarlo, seguo due semplici regole:
- Parte letterale: prendo le lettere comuni e non comuni che compaiono nei monomi, una sola volta, e scelgo per ciascuna il massimo esponente con cui compare.
- Coefficiente numerico: se i coefficienti sono numeri interi, si calcola il minimo comune multiplo tra quei numeri. Se invece i coefficienti sono frazionari o decimali, per convenzione si considera 1 come coefficiente del mcm. Questo perché, in questi casi, si guarda soprattutto alla parte letterale del monomio.
Un esempio pratico
Considero questi monomi
$$ 8 a^2b^3c $$
$$ 4 a^4b^2 $$
$$ 6 a^3b^4c^2 $$
Per prima cosa calcolo il minimo comune multiplo del valore assoluto dei coefficienti numerici dei monomi
In questo caso il m.c.m dei coefficienti è 24
$$ mcm(8,4,6) = 2^3 \cdot 3 = 24 $$
Nota. Se i coefficienti numerici non sono tutti numeri interi uso come coefficiente numerico il numero 1.
Dispongo in colonna le lettere dei monomi
$$ \begin{array}{|clcc} a^2 & b^3 & c \\ a^4 & b^2 & \\ a^3 & b^4 & c^2 \\ \hline \\ a^4 & b^4 & c^2 \end{array} $$
Poi prendo tutte le lettere dei monomi (a,b,c) con l'esponente più alto e le moltiplico tra loro
$$ a^4 \cdot b^4 \cdot c^2 $$
Infine moltiplico il coefficiente numerico e la parte letterale che ho appena trovato.
Quindi, il minimo comune multiplo dei tre monomi è 24·a4b4c2
$$ 24a^4b^4c^2 $$
Esempio 2
Devo calcolare il minimo comune multiplo di questi monomi
$$ \frac{3}{5} a^4b^5 $$
$$ 8 b^3c^2 $$
$$ 2 ab^2c $$
In questo caso i coefficienti non sono tutti interi. Quindi, considero come m.c.m. dei coefficienti numerici il numero 1.
$$ mcm( \frac{3}{5}, 8, 2) = 1 $$
Nota. Si tratta di una semplificazione per evitare di fare calcoli troppo lunghi. In fin dei conti, in questa operazione spesso la parte che conta di più è quella letterale. In alternativa, avrei potuto sostituire solo la frazione con 1 e calcolare il mcm. $$ mcm( 1, 8, 2) = 8 $$ oppure trasformare tutti i numeri in frazioni e calcolare l'mcm più preciso $$ mcm( \frac{3}{5}, \frac{8}{1}, \frac{2}{1}) = \frac{mcm(3,8,2)}{MCD(5,1,1)} = \frac{24}{1} = 24 $$
Dispongo le lettere in conlonna, prendo una sola volta tutte le lettere (a,b,c) con l'esponente più grande e le moltiplico tra loro.
$$ \begin{array}{|clcc} a^4 & b^5 & \\ & b^3 & c^2 \\ a & b^2 & c \\ \hline \\ a^4 & b^5 & c^2 \end{array} $$
Quindi, il minimo comune multiplo dei monomi è 1·a4·b5·c2
$$ mcm = a^4b^5c^2 $$
E così via.