La progressione in matematica

Cos'è una progressione numerica

Una progressione è una particolare successione di numeri regolata da una legge aritmetica o geometrica.

Esistono due tipi di progressioni: la progressione aritmetica e la progressione geometrica.

La progressione aritmetica

In una progressione aritmetica la differenza tra ciascun termine e il precedente è costante. Ad eccezione del primo termine della successione. $$ a_n - a_{n-1} = d $$ Quindi ogni termine della progressione è uguale alla somma tra il termine precedente e la ragione $$ a_n = a_{n-1} + d $$

Esempio

Questa successione è una progressione aritmetica

$$ 3 \ , \ 5 \ , \ 7 \ , \ 9 \ , \ 11 \ , \ 13 \ \dots $$

La ragione della progressione è

$$ d = 2 $$

I termini della progressione sono determinati in questo modo

$$ a_n = a_{n-1} + 2 $$

Pertanto, ad eccezione del primo termine a1=3 gli altri termini sono

$$ a_2 = 3 +2 = 5 \\ a_3 = 5+2 = 7 \\ a_4 = 7+2 = 9 \\ a_5 = 9 +2 = 11 \\ a_6 = 11+2 =13 $$

La progressione geometrica

In una progressione geometrica il rapporto tra ciascun termine e il precedente è costante. Fatta eccezione per il primo termine della successione. $$ \frac{ a_{n} }{a_n-1 } = q $$ Quindi ogni termine è uguale al prodotto tra il termine precedente e la ragione $$ a_n = a_{n-1} \cdot q $$

Esempio

Questa successione è una progressione geometrica

$$ 2 \ , \ 4 \ , \ 8 \ , \ 16 \ , \ 32 \ , \ 64 \ \dots $$

La ragione della progressione è

$$ q = 2 $$

I termini della progressione sono determinati in questo modo

$$ a_n = a_{n-1} \cdot 2 $$

Pertanto, ad eccezione del primo termine a1=2 gli altri termini sono

$$ a_2 = 2 \cdot 2 =4 \\ a_4 = 4 \cdot 2 = 8 \\ a_4 = 8 \cdot 2 = 16 \\ a_5 = 16 \cdot 2 = 32 \\ a_6 = 32 \cdot 2 = 64 $$

E così via

 


 

Segnalami un errore, un refuso o un suggerimento per migliorare gli appunti

FacebookTwitterLinkedinLinkedin
knowledge base

Successioni e progressioni