Intervallo in matematica

Un intervallo è un insieme di numeri/punti compresi tra due numeri a e b detti estremi dell'intervallo con a<b.

Gli intervalli aperti e chiusi

L'intervallo può essere

  • chiuso [a,b] se gli estremi appartengono all'intervallo $$ [a,b] = \{ x \in R: a \le x \le b \} $$
    esempio di intervallo chiuso
  • aperto (a,b) se gli estremi non appartengono all'intervallo
    $$ (a,b) = \{ x \in R: a < x < b \} $$
    esempio di intervallo aperto

Nota. I numeri a e b sono detti estremi anche nell'intervallo aperto, ossia anche se non fanno parte dell'intervallo.

L'intervallo può anche essere

  • aperto a sinistra e chiuso a destra (a,b] se l'estremo b appartiene all'intervallo mentre l'estremo a no $$ (a,b] = \{ x \in R: a < x \le b \} $$
    l'intervallo chiuso a sinistra e aperto a destra
  • chiuso a sinistra e aperto a destra [a,b) se l'estremo a appartiene all'intervallo mentre l'estremo b no
    $$ (a,b] = \{ x \in R: a \le x < b \} $$
    l'intervallo chiuso a sinistra e aperto a destra

Gli intervalli limitati e illimitati

Un intervallo può essere limitato o illimitato

  • intervallo limitato se gli estremi a e b dell'intervallo sono numeri finiti. $$ (a,b) $$
  • intervallo illimitato se almeno uno dei due estremi è ±∞. $$ (a,+∞) \\ (-∞, b) \\ (-∞,+∞) = R $$
    esempi di intervalli illimitati

Nota. Negli intervalli illimitati l'infinito è sempre un estremo aperto perché l'infinito è soltanto un simbolo matematico che indica un insieme infinito di numeri. Pertanto, a seconda dei casi non ha un estremo superiore o inferiore. Ad esempio (a,+∞) e (-∞,b).Viceversa, l'estremo finito dell'intervallo illimitato può essere chiuso [a,+∞) e (-∞,b] o aperto (a,+∞) e (-∞,b).

E così via

 


 

Segnalami un errore, un refuso o un suggerimento per migliorare gli appunti

FacebookTwitterLinkedinLinkedin
knowledge base